首页> 外文OA文献 >Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN
【2h】

Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN

机译:使用BiLSTM-CRF和CNN通过句子类型分类改善情感分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Different types of sentences express sentiment in very different ways. Traditional sentence-level sentiment classification research focuses on one-technique-fits-all solution or only centers on one special type of sentences. In this paper, we propose a divide-and-conquer approach which first classifies sentences into different types, then performs sentiment analysis separately on sentences from each type. Specifically, we find that sentences tend to be more complex if they contain more sentiment targets. Thus, we propose to first apply a neural network based sequence model to classify opinionated sentences into three types according to the number of targets appeared in a sentence. Each group of sentences is then fed into a one-dimensional convolutional neural network separately for sentiment classification. Our approach has been evaluated on four sentiment classification datasets and compared with a wide range of baselines. Experimental results show that: (1) sentence type classification can improve the performance of sentence-level sentiment analysis; (2) the proposed approach achieves state-of-the-art results on several benchmarking datasets.
机译:不同类型的句子以非常不同的方式表达情感。传统的句子级情感分类研究集中于一种技术适合所有人的解决方案,或者仅集中于一种特殊类型的句子。在本文中,我们提出了一种分而治之的方法,该方法首先将句子分为不同的类型,然后对每种类型的句子分别进行情感分析。具体来说,我们发现,如果句子包含更多的情感目标,它们往往会变得更加复杂。因此,我们建议首先应用基于神经网络的序列模型,根据句子中出现的目标数量,将有意见的句子分为三种类型。然后将每组句子分别馈入一维卷积神经网络以进行情感分类。我们的方法已经在四个情感分类数据集上进行了评估,并与各种基准进行了比较。实验结果表明:(1)句子类型分类可以提高句子层次情感分析的性能; (2)所提出的方法在多个基准数据集上获得了最新的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号